$$
\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{O}_{4}
$$

Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Nardelli, M. (1983). Comput. Chem. 7, 95-98.
Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of Crystal Structures. Univ. of Göttingen, Germany.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. Univ, of Göttingen, Germany.
Shimizu, S., Kashino, S. \& Haisa, M. (1975). Acta Cryst. B31, 12871292.

Thappa, R. K. (1989). Personal communication.

Acta Cryst. (1995). C51, 2198-2200

Bis[4-(dimethylamino)phenyl](N -methylcarbamoyl)amine, $\mathrm{C}_{18} \mathrm{H}_{\mathbf{2 4}} \mathrm{N}_{4} \mathrm{O}$

Isao Fusi and Noriaki Hirayama

Department of Biological Science and Technology, Tokai University, 317 Nishino, Numazu, Shizuoka 410-03, Japan

Norihto Aoyama and Akira Mike
Research Laboratories, Kyowa Medex Co. Ltd, 600-1 Minami-Ishiki, Nagaizumi-cho, Sunto-gun, Shizuoka 411, Japan
(Received 5 January 1995; accepted 10 May 1995)

Abstract

The two phenyl rings in the title compound, N, N-bis[4-(dimethylamino)phenyl]- N^{\prime}-methylurea, are almost perpendicular to one another, with dihedral angles of 79.9 (4) and $89.2(4)^{\circ}$ for the two crystallographically independent molecules in the asymmetric unit.

Comment

In the presence of peroxidase and hydrogen peroxide, the title compound, (I), is converted into $4,4^{\prime}$-bis(dimethylamino)diphenylamine (Bindshedler's green leuco base) (Cheng, Ueno \& Imamura, 1982; Tichý \& Petter, 1984) and a blue colour is developed. Therefore, the molecule can be applicable clinically as a functional dye used to measure the activity of monoamine oxidase

(I)
in blood. Effective conversion is essential for the sensitivity and accuracy of the clinical diagnosis. The structure analysis of the title compound was undertaken in order to discover the structure-function relationships.

The two crystallographically independent molecules in the asymmetric unit have similar conformations. The molecules as a whole have propeller forms as opposed to the butterfly form observed in a similar functional dye (MCDP; Fujii, Hirayama \& Miike, 1993). The angles at the hinge N atoms total 359.3 (9) and $359.8(9)^{\circ}$, indicating a very planar structure at the N atom. The $\mathrm{N}-\mathrm{C}(=\mathrm{O})$ distances of 1.400 (4) and $1.383(4) \AA$ in the independent molecules are significantly longer than the corresponding distances in the N-methylcarbamoyl group, indicating that this group may be a good leaving group due to the bond difference. The sum of the bond angles around atoms N 4 and $\mathrm{N} 4^{\prime}$ indicates that the terminal dimethylamino groups are very planar even though they are not coplanar with the phenyl rings to which they are attached. The conjugated system in the molecule can be schematically represented by formula (II) below.

(II)

Fig. 1. ORTEPII drawing (Johnson, 1976) of molecule A, showing heavy atoms with 50% probability ellipsoids and H atoms as circles of arbitrary radii.

Experimental

The crystals were grown from an ethanol solution at 281 (2) K . A crystal sealed in a glass capillary filled with nitrogen gas was used for the diffraction experiments.

Crystal data

$$
\begin{array}{ll}
\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O} & \mathrm{Cu} K \alpha \text { radiation } \\
M_{r}=312.41 & \lambda=1.54184 \AA
\end{array}
$$

Acta Crystallographica Section C
Monoclinic
$P 2_{1} / n$
$a=21.811(7) \AA$
$b=10.177(1) \AA$
$c=16.006(2) \AA$
$\beta=99.91(2)^{\circ} \AA$
$V=3500(1) \AA^{3}$
$Z=8$
$D_{x}=1.186 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection
Enraf-Nonius CAD-4 Turbo diffractometer
$\omega / 2 \theta$ scans
Absorption correction: none
5558 measured reflections
5493 independent reflections 3051 observed reflections
$[F>3 \sigma(F)]$
Refinement
Refinement on F
$R=0.055$
$w R=0.068$
$S=2.85$
3051 reflections
575 parameters
$w=1 / \sigma^{2}(F)$

$$
\begin{aligned}
& (\Delta / \sigma)_{\max }=0.02 \\
& \Delta \rho_{\max }=0.18 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.20 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

$B_{\text {eq }}=(4 / 3) \Sigma_{i} \Sigma_{j} \beta_{i j} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.				
	x	y	z	$B_{\text {eq }}$
07A	0.5753 (1)	-0.1915 (3)	0.6908 (2)	8.2 (1)
N1A	0.5907 (1)	-0.1346 (3)	0.8311 (2)	6.3 (1)
N4A	0.6159 (2)	-0.2878 (4)	1.1737 (2)	7.5 (1)
$\mathrm{N} 4^{\prime}{ }_{\text {A }}$	0.7034 (2)	0.3510 (5)	0.7814 (3)	9.8 (1)
N8A	0.5365 (1)	-0.3231 (3)	0.7829 (2)	6.5 (1)
C1A	0.5963 (2)	-0.1769 (4)	0.9180 (2)	5.5 (1)
$\mathrm{Cl}^{\prime} A$	0.6187 (2)	-0.0129 (4)	0.8159 (2)	5.8 (1)
C2A	0.5743 (2)	-0.0983 (4)	0.9764 (2)	5.8 (1)
$\mathrm{C} 2^{\prime}{ }^{\text {a }}$	0.6752 (2)	0.0228 (4)	0.8631 (2)	6.3 (1)
C3A	0.5813 (2)	-0.1339 (4)	1.0597 (2)	5.9 (1)
C3' ${ }^{\prime}$	0.7030 (2)	0.1411 (5)	0.8528 (2)	6.6 (1)
C4A	0.6099 (2)	-0.2494 (4)	1.0901 (2)	5.7 (1)
C4' ${ }^{\prime}$	0.6737 (2)	0.2320 (4)	0.7928 (2)	6.6 (1)
C5A	0.6320 (2)	-0.3297 (4)	1.0305 (2)	6.4 (1)
$\mathrm{C5}^{\prime} A$	0.6167 (2)	0.1963 (5)	0.7459 (3)	7.5 (1)
C6A	0.6262 (2)	-0.2902 (5)	0.9469 (2)	6.4 (1)
C6' ${ }^{\text {a }}$	0.5895 (2)	0.0783 (5)	0.7582 (2)	7.2 (1)
C7A	0.5673 (2)	-0.2179 (4)	0.7635 (2)	6.5 (1)
C9A	0.5058 (2)	-0.4120 (6)	0.7190 (3)	8.1 (1)
C41A	0.5910 (3)	-0.2087 (6)	1.2331 (3)	9.5 (2)
$\mathrm{C} 41^{\prime} A$	0.7649 (3)	0.3728 (6)	0.8175 (3)	10.9 (2)
C42A	0.6418 (3)	-0.4114 (5)	1.2024 (3)	7.9 (1)
C42' ${ }^{\text {A }}$	0.6700 (3)	0.4511 (7)	0.7324 (5)	11.8 (2)
O7B	0.4470 (1)	-0.3289 (3)	0.8986 (1)	6.6 (1)
N1B	0.3509 (1)	-0.2331 (3)	0.8718 (2)	5.6 (1)
N4B	0.1193 (2)	-0.1413 (4)	0.9674 (2)	9.0 (1)
$\mathrm{N} 4^{\prime} B$	0.3601 (2)	-0.1251 (4)	0.5279 (2)	8.3 (1)
N8B	0.3957 (2)	-0.2977 (4)	1.0071 (2)	6.9 (1)
C1B	0.2929 (1)	-0.2096 (4)	0.8992 (2)	5.3 (1)
$\mathrm{Cl}^{\prime} B$	0.3540 (2)	-0.2058 (3)	0.7847 (2)	5.3 (1)

Cell parameters from 25 reflections
$\theta=30-35^{\circ}$
$\mu=0.602 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Prism
$0.5 \times 0.4 \times 0.3 \mathrm{~mm}$
Yellow
$R_{\text {int }}=0.073$
$\theta_{\text {max }}=59.98^{\circ}$
$h=0 \rightarrow 24$
$k=-11 \rightarrow 0$
$l=-17 \rightarrow 17$
3 standard reflections frequency: 50 min intensity decay: 10.8%

Extinction correction:
$\left|F_{c}\right| /\left(1+g I_{c}\right)$
Extinction coefficient: 3.86×10^{-6}
Atomic scattering factors from International Tables for X-ray Crystallography (1974, Vol. IV)

C2B	$0.2721(2)$	$-0.0840(4)$	$0.9079(2)$	$5.7(1)$
C2 $^{\prime} B$	$0.3039(2)$	$-0.2341(4)$	$0.7228(2)$	$6.3(1)$
C3 $^{\prime} B$	$0.2149(2)$	$-0.0615(4)$	$0.9313(2)$	$5.8(1)$
C3 $^{\prime} B$	$0.3052(2)$	$-0.2070(4)$	$0.6375(2)$	$6.7(1)$
C4B	$0.1765(2)$	$-0.1633(4)$	$0.9471(2)$	$6.0(1)$
C4 $^{\prime} B$	$0.3574(2)$	$-0.1549(4)$	$0.6124(2)$	$6.2(1)$
C5B	$0.1984(2)$	$-0.2921(5)$	$0.9382(2)$	$6.4(1)$
C5 $5^{\prime} B$	$0.4079(2)$	$-0.1265(4)$	$0.6762(2)$	$6.6(1)$
C6B B	$0.2545(2)$	$-0.3126(5)$	$0.9139(2)$	$6.3(1)$
C6 $^{\prime} B$	$0.4058(2)$	$-0.1514(4)$	$0.7607(2)$	$6.0(1)$
C7B B	$0.4009(2)$	$-0.2880(4)$	$0.9251(2)$	$5.6(1)$
C9B	$0.4435(2)$	$-0.3574(6)$	$1.0689(3)$	$8.0(1)$
CA1B	$0.1002(2)$	$-0.0109(8)$	$0.9835(4)$	$11.9(2)$
C41 $^{\prime} B$	$0.3067(3)$	$-0.1624(7)$	$0.4643(3)$	$9.9(2)$
C42B $^{\prime} B$	$0.0806(2)$	$-0.2508(7)$	$0.9850(4)$	$11.8(2)$
C42 $^{\prime} B$	$0.4188(3)$	$-0.1201(7)$	$0.5010(3)$	$10.7(2)$

Table 2. Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$

$\mathrm{N} 1 \mathrm{~A}-\mathrm{Cl} 1$ A	1.441 (4) N1B	N $1 B-\mathrm{C} 1 B$	1.428 (4)
$\mathrm{N} 1 A-\mathrm{Cl}^{\prime} A$	1.421 (4) N1B	$\mathrm{N} 1 B-\mathrm{Cl}^{\prime} B$	1.436 (4)
N1A-C7A	1.400 (4) N1B	N1B-C7B	1.383 (4)
N4A-C4A	1.378 (4) N4B	N4B-C4B	1.361 (4)
N4A-C41A	1.423 (6) N4B	$\mathrm{N} 4 B-\mathrm{C} 41 \mathrm{~B}$	1.428 (7)
$\mathrm{N} 4 \mathrm{~A}-\mathrm{C} 42 \mathrm{~A}$	1.423 (6) N4B	N4B-C42B	1.455 (6)
$\mathrm{N4}{ }^{\prime} A-\mathrm{C} 4^{\prime} A$	1.400 (5) $\quad \mathrm{N} 4^{\prime}$	$\mathrm{N} 4^{\prime} B-\mathrm{C} 4^{\prime} B$	1.397 (4)
$\mathrm{N} 4^{\prime} A-\mathrm{C} 41^{\prime} A$	1.385 (6) $\quad \mathrm{N} 4^{\prime}$	$\mathrm{N} 4^{\prime} B-\mathrm{C} 41^{\prime} B$	1.458 (6)
$\mathrm{N} 4^{\prime} A-\mathrm{C} 42^{\prime} A$	1.409 (7) $\quad \mathrm{N} 4^{\prime}$	$\mathrm{N} 4^{\prime} B-\mathrm{C} 42^{\prime} B$	1.421 (6)
C7A-07A	1.235 (4) $\quad C 7 B$	C7B-07B	1.227 (4)
C7A-N8A	1.329 (5) C7B	$\mathrm{C} 7 \mathrm{~B}-\mathrm{N} 8 B$	1.341 (4)
N8A-C9A	1.442 (5) N8B	N8B-C9B	1.441 (5)
$\mathrm{Cl} A-\mathrm{N} 1 A-\mathrm{Cl}^{\prime} A$	117.3 (3) C1B	$\mathrm{C} 1 B-\mathrm{N} 1 B-\mathrm{C}^{\prime} B$	117.3 (3)
$\mathrm{C} 1 A-\mathrm{N} 1 A-\mathrm{C} 7 \mathrm{~A}$	121.6(3) C1B	$\mathrm{C} 1 B-\mathrm{N} 1 B-\mathrm{C} 7 B$	121.7 (3)
$\mathrm{Cl}^{\prime} A-\mathrm{N} 1 A-\mathrm{C} 7 A$	120.4 (3) Cl^{\prime}	$\mathrm{Cl}^{\prime} B-\mathrm{N} 1 B-\mathrm{C} 7 B$	120.8 (3)
$\mathrm{N} 1 A-\mathrm{C} 1 A-\mathrm{C} 2 A$	120.0 (3) $\quad \mathrm{N} 1 B$	$\mathrm{N} 1 B-\mathrm{C} 1 B-\mathrm{C} 2 B$	120.8 (3)
$\mathrm{N} 1 A-\mathrm{Cl} A-\mathrm{C} 6 A$	122.4 (3) $\mathrm{N} 1 B$	$\mathrm{N} 1 B-\mathrm{C} 1 B-\mathrm{C} 6 B$	121.2 (3)
$\mathrm{N} 1 A-\mathrm{Cl}^{\prime} A-\mathrm{C}^{\prime} A$	120.4 (3) N1B	$\mathrm{N} 1 B-\mathrm{Cl}^{\prime} B-\mathrm{C}^{\prime} B$	119.6 (3)
$\mathrm{N} 1 A-\mathrm{Cl}^{\prime} A-\mathrm{C}^{\prime} A$	122.4 (3) $\quad \mathrm{N} 1 B$	$\mathrm{N} 1 B-\mathrm{Cl}^{\prime} B-\mathrm{C}^{\prime} B$	122.1 (3)
N4A-C4A-C3A	123.2 (3) N4B	$\mathrm{N} 4 B-\mathrm{C} 4 B-\mathrm{C} 3 B$	121.9 (4)
N4A-C4A-C5A	120.5 (4) $\quad \mathrm{N} 4 B$	$\mathrm{N} 4 B-\mathrm{C} 4 B-\mathrm{C} 5 B$	121.1 (4)
C4A-N4A-C41A	120.3 (4) C4B	$\mathrm{C} 4 B-\mathrm{N} 4 B-\mathrm{C} 41 B$	120.3 (4)
$\mathrm{C} 4 A-\mathrm{N} 4 A-\mathrm{C} 42 \mathrm{~A}$	122.1 (4) C4B	$\mathrm{C} 4 B-\mathrm{N} 4 B-\mathrm{C} 42 B$	120.4 (4)
$\mathrm{C} 41 A-\mathrm{N} 4 A-\mathrm{C} 42 \mathrm{~A}$	117.4 (4) C41	$\mathrm{C} 41 \mathrm{~B}-\mathrm{N} 4 B-\mathrm{C} 42 B$	118.7 (4)
$\mathrm{N} 4^{\prime} A-\mathrm{C4}^{\prime} A-\mathrm{C} 3^{\prime} A$	119.6 (4) $\quad \mathrm{N} 4^{\prime}$	$\mathrm{N} 4^{\prime} B-\mathrm{C} 4^{\prime} B-\mathrm{C} 3^{\prime} B$	122.8 (4)
$\mathrm{N} 4^{\prime} A-\mathrm{C}^{\prime} A-\mathrm{C}^{\prime} A$	123.2 (4) $\quad \mathrm{N} 4^{\prime}$	$\mathrm{N} 4^{\prime} B-\mathrm{C} 4^{\prime} B-\mathrm{C} 5^{\prime} B$	120.2 (3)
$\mathrm{C} 41^{\prime} A-\mathrm{N} 4^{\prime} A-\mathrm{C} 4^{\prime} A$	121.4 (4) C41	$\mathrm{C} 41^{\prime} B-\mathrm{N} 4^{\prime} B-\mathrm{C} 4^{\prime} B$	117.2 (4)
$\mathrm{C} 42^{\prime} A-\mathrm{N} 4^{\prime} A-\mathrm{C}^{\prime} A$	119.5 (4) C42	$\mathrm{C} 42^{\prime} B-\mathrm{N} 4^{\prime} B-\mathrm{C} 4^{\prime} B$	119.5 (4)
$\mathrm{C} 42^{\prime} A-\mathrm{N} 4^{\prime} A-\mathrm{C} 41^{\prime} A$	119.2 (5) C42	$\mathrm{C} 42^{\prime} B-\mathrm{N} 4^{\prime} B-\mathrm{C} 41^{\prime} B$	116.7 (4)
N1A-C7A-07A	120.3 (4) $\quad \mathrm{N} 1 B$	$\mathrm{N} 1 B-\mathrm{C} 7 B-\mathrm{O} 7 B$	122.0 (3)
N1A-C7A-N8A	116.0 (3) $\mathrm{N} 1 B$	$\mathrm{N} 1 B-\mathrm{C} 7 B-\mathrm{N} 8 B$	116.3 (3)
O7A-C7A-N8A	123.7 (4) O7B	$\mathrm{O} 7 B-\mathrm{C} 7 \mathrm{~B}-\mathrm{N} 8 B$	121.7 (3)
C7A-N8A-C9A	122.1 (4) C7B	$\mathrm{C} 7 B-\mathrm{N} 8 B-\mathrm{C} 9 B$	122.0 (3)
$\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 4 A-\mathrm{N} 4 \mathrm{~A}-\mathrm{C} 41 \mathrm{~A}$ (6)			
$\mathrm{C} 5 A-\mathrm{C} 4 A-\mathrm{N} 4 A-\mathrm{C} 42 \mathrm{~A}$		-3.1 (6)	
$\mathrm{C} 3^{\prime} A-\mathrm{C} 4^{\prime} A-\mathrm{N} 4^{\prime} A-\mathrm{C} 41^{\prime} A$		${ }^{\prime} A \quad 10.6$ (6)	
$\mathrm{C} 5^{\prime} A-\mathrm{C} 4^{\prime} A-\mathrm{N} 4^{\prime} A-\mathrm{C} 42^{\prime} A$		'A 12.5 (7)	
$\mathrm{O} 7 A-\mathrm{C} 7 A-\mathrm{N} 1 A-\mathrm{Cl}^{\prime} A$		6.0 (5)	
$\mathrm{N} 8 A-\mathrm{C} 7 A-\mathrm{N} 1 A-\mathrm{C} 1 A$		16.3 (5)	
$\mathrm{C} 6 A-\mathrm{C} 1 A-\mathrm{N} 1 A-\mathrm{C} 7 A$		52.3 (4)	
$\mathrm{C}^{\prime}{ }^{\prime} A-\mathrm{Cl}^{\prime} A-\mathrm{N} 1 A-\mathrm{C} 7 A$		52.2 (4)	
O7A-C7A-N8A-C9A		-4.4 (6)	
$\mathrm{N} 1 A-\mathrm{C} 7 A-\mathrm{N} 8 A-\mathrm{C} 9 \mathrm{~A}$		175.2 (3)	
$\mathrm{C} 3 B-\mathrm{C} 4 B-\mathrm{N} 4 B-\mathrm{C} 41 B$		-7.9 (6)	
$\mathrm{C} 5 B-\mathrm{C} 4 B-\mathrm{N} 4 B-\mathrm{C} 42 B$		3.4 (6)	
$\mathrm{C} 3^{\prime} B-\mathrm{C} 4^{\prime} B-\mathrm{N} 4^{\prime} B-\mathrm{C} 41^{\prime} B$		' B - \quad - 5.4 (6)	
$\mathrm{C}^{\prime} B-\mathrm{C} 4^{\prime} B-\mathrm{N} 4^{\prime} B-\mathrm{C} 42^{\prime} B$		$2^{\prime} B \quad 26.7$ (6)	
$\mathrm{O} 7 B-\mathrm{C} 7 B-\mathrm{N} 1 B-\mathrm{C} 1^{\prime} B$		-8.3 (5)	
$\mathrm{N} 8 B-\mathrm{C} 7 B-\mathrm{N} 1 B-\mathrm{C} 1 B$		-10.7(5)	
$\mathrm{C} 6 B-\mathrm{C} 1 B-\mathrm{N} 1 B-\mathrm{C} 7 B$		-70.1 (4)	
$\mathrm{C}^{\prime}{ }^{\prime} B-\mathrm{Cl}^{\prime} B-\mathrm{N} 1 B-\mathrm{C} 7 B$		-42.5 (5)	
$\mathrm{O} 7 \mathrm{~B}-\mathrm{C} 7 \mathrm{~B}-\mathrm{N} 8 B-\mathrm{C} 9 B$		-0.4 (6)	
$\mathrm{N} 1 B-\mathrm{C} 7 \mathrm{~B}-\mathrm{N} 8 B-\mathrm{C} 9 B$		177.7 (4)	

All non-H atoms were located by direct methods using the program SAPI91 (Fan, 1991). Most H atoms were found from difference Fourier maps and the positions of the remaining H atoms were calculated geometrically. All non-H atoms were
refined anisotropically and some of the H atoms were refined isotropically.

Data collection: CAD-4 Software (Enraf-Nonius, 1989). Cell refinement: CAD-4 Software. Data reduction: CAD4 Software. Program(s) used to solve structure: SAPI91 (Fan, 1991). Program(s) used to refine structure: TEXSAN (Molecular Structure Corporation, 1992). Molecular graphics: ORTEPII (Johnson, 1976).

Lists of structure factors, anisotropic displacement parameters, H atom coordinates and complete geometry have been deposited with the IUCr (Reference: AS1171). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

Cheng, K. L., Ueno, K. \& Imamura, T. (1982). In Handbook of Organic Analytical Reagents. Boca Raton, Florida: CRC Press. Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Fan, H.-F. (1991). SAPI91. Structure Analysis Programs with Intelligent Control. Rigaku Corporation, Tokyo, Japan.
Fujii, I., Hirayama, N. \& Miike, A. (1993). Acta Cryst. C49, 15401541.

Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Molecular Structure Corporation (1992). TEXSAN. Single Crystal Structure Analysis Package. MSC, 3200 Research Forest Drive, TX 77381, USA.
Tichý, K. \& Petter, W. (1984). Acta Cryst. C40, 1055-1057.

Abstracting/indexing details: This journal is covered by Biological Abstracts/BIOSIS; Science Citation Index, SCISEARCH; Chemistry Citation Index; Materials Science Citation Index; Research Alert; Current Contents: Physical, Chemical and Earth Sciences.
Prices: The regular annual subscription rate for Volume C51 is Dkr 4795. All subscribers in the USA, Canada and Japan must pay an additional charge of Dkr 90 for airfreighting. For prices of Union journals for 1995 and back numbers, see Acta Cryst. (1994). C50, 2101-2102. All payments to Messrs. Munksgaard should be made direct to Copenhagen by cheque or through a bank transfer in Danish kroner, dependent on the currency regulations for the country concerned. For subscriptions delivered to addresses in the European Union, a VAT registration number should be provided. Otherwise local VAT on journals should be added to the above price (Austria 10\%, Belgium 6\%, Denmark 25%, Finland 0%, France 2.1%, Germany 7%, Greece 4%, Ireland 21%, Italy 4%, Luxembourg 3%, The Netherlands 6%, Portugal 5%, Spain 3%, Sweden 25%,UK 0%). For subscriptions in Canada, 7% GST should be added to the above price.
Copyright: Individual readers of this joumal, and non-profit libraries acting for them, are permitted to make 'fair use' of the material in it, such as to copy an article for use in teaching or research (for other kinds of copying, see Copying fees). Permission is granted to quote short passages and illustrations from this journal in scientific works with no further formality than the customary acknowledgement of the source. Republication or systematic or multiple reproduction of longer passages in this journal (including abstracts) is permitted only under licence from the International Union of Crystallography; in addition, the Union may require that permission be obtained from one of the authors. No material published in this journal may be stored on microfilm or videocassettes or in electronic databases and the like or reproduced photographically or otherwise without prior permission in writing of the Union. Enquiries and requests should be addressed to The Executive Secretary, International Union of Crystallography, 2 Abbey Square, Chester CHI 2HU, England.
Copying fees: For each copy of the article made beyond the free copying permitted (see Copyright), the base fee of USD 6.00 should be paid to the International Union of Crystallography through the Copyright Clearance Center Transactional Reporting Service, 222 Rosewood Drive, Danvers, MA 01923, USA. 0108-2701/95/USD $6.00+0.00$. In the United States prior to photocopying items for educational use, please contact The Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, 508-750-8400.
Advertising information: Advertising is accepted in IUCr journals. Further information on advertising may be obtained from The Managing Editor, Intemational Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

The IUCr is a member of the International Council of Scientific Unions

